Algebra 2 DISTRICT COMMON ASSESSMENT 1

Directions: Show all work on this paper. When completed, transfer your answers online.

1. What is the equation written in vertex form of a parabola with a vertex of (-1, 8) that passes through (1, 0)? a) $y = (x + 1)^2 + 8$ b) $y = 2(x - 1)^2 - 8$ c) $y = 2(x + 1)^2 - 8$ d) $y = -2(x + 1)^2 + 8$	2. Function g is a transformation of the parent function $f(x)=x^2$. The graph of g is a translation left 4 units and down 2 units of the graph of f. Write the equation for g in the form $y = ax^2 + bx + c$. a) $y = x^2 + 8x + 18$ b) $y = x^2 + 8x + 14$ c) $y = x^2 - 8x + 18$ d) $y = x^2 - 8x + 14$
3. What is the vertex of the graph of the function $f(x) =$	$x^{2} + (\omega_{x} + q)^{2}$
a) $(-3, 0)$ b) $(0, -3)$ c) $(0, 3)$ d) $(3, 0)$	
4. Part A: The path of a projectile launched from a 16-ft- Which is the correct araph of the equation?	tall tower is modeled by the equation $y = -16t^2 + 64t + 16$.
$a)_{0} \xrightarrow{p}_{0} p$	c) a_0 d a_0
 4. Part B: The path of a projectile launched from a 16- ft-tall tower is modeled by the equation y = -16t² + 64t + 16. What is the maximum height, in feet, reached by the projectile? 	5. Use quadratic regression to find the equation of a quadratic function that fits the given points. x 0 1 2 3 y 6.1 71.2 125.9 89.4 a) $y = 8.52x^2 - 16.72x + 23.47$ b) $y = -18.25x^2 + 94.32x + 4.08$ c) $y = 2.5x^2 - 10.5x + 2$
The maximum height is feet.	d) $y = -25.4x^2 + 106.66x + 2.06$

(a Solve the equation $x^2 + x = 12$	7. A ball is thrown from the top row of seats in a
a) $x = -3$ and $x = -4$ b) $x = 2$ and $x = -6$ c) $x = -2$ and $x = -6$ d) $x = 3$ and $x = -4$	stadium. The function $h(t) = -16t^2 + 64t + 80$ gives the height, h, in feet, of the ball t seconds after it is thrown. How long will it be before the ball hits the ground?
	The ball will hit the ground after seconds.
8. Identify the interval(s) on which the function $y = x^2 - 2x - 48$ is positive.	9. Use square roots to solve the equation $x^2 = -25$ over the complex numbers. Select the TWO solutions that apply.
a) x < -6 and x > 8 b) -6 < x < 8 c) x > 6 and x < -8 d) 6 < x < 8	a) -5 b) -5i c) -5i ² d) 5i
10. Write the product $(4 + i)(4 - i)$ in the form $a + bi$.	II. Write the quotient $\frac{10}{1+2i}$ in the form $a + bi$.
a) $ 6 - i $ b) $ 6 - i^2$ c) $ 7$ d) 8	a) $-\frac{10}{3} + \frac{20}{3}i$ b) $10 - 5i$ c) $\frac{5}{2} + \frac{1}{2}i$ d) $2 - 4i$
12. Factor the expression $16x^2 + 25$.	13. Solve $0 = x^2 - 10x + 30$ by completing the square.
a) $(4x - 5i)(4x - 5i)$ b) $(4x - 5i)(4x + 5i)$ c) $(4x - 5)(4x + 5i)$ d) $(4x + 5)(4x - 5)$	a) $x = 5 + i$ and $x = 5 - i$ b) $x = 5 + i\sqrt{5}$ and $x = 5 - i\sqrt{5}$ c) $x = -5 - i\sqrt{6}$ and $x = -5 + i\sqrt{6}$ d) $x = -5 - i\sqrt{5}$ and $x = -5 + i\sqrt{5}$
H. A function is defined by the equation $y = x^2 + 3x + 1$. Which statements are true? Select all that apply . 2
a) The equation written in vertex form is $y = \left(x + \frac{3}{2}\right)$	$-\frac{5}{4}$
b) The equation written in vertex form is $y = \left(x + \frac{5}{4}\right)$ c) The graph of the function has a minimum of $y = -\frac{5}{4}$ d) The domain of the function is all real numbers.	$2 - \frac{3}{2}$ at x = $-\frac{3}{2}$

15.	Solve x^2 + 3x + 4 = 0 using the Quadratic Formula. Select any solutions that apply.	16. Solve $x^2 - 7x + 5 = 0$ using the Quadratic Formula.
a) b) c) d) 17. a) b) c)	$x = \frac{-3 + i\sqrt{7}}{2}$ $x = \frac{-3 - i\sqrt{7}}{2}$ $x = \frac{-3 + \sqrt{7}}{2}$ $x = \frac{-3 - \sqrt{7}}{2}$ Part A: A toy cannon ball is launched from a cannon on top of a platform. The equation $h(t) = -5t^2 + 20t + 4$ gives the height, h, in meters, of the ball t seconds after it is launched. What equation can be used to tell whether the ball reaches a height of 12 m? $-5t^2 + 20t + 4 = 0$ $-5t^2 + 20t + 4 = 12$ $-5t^2 + 20t + 4 = 12$	a) $x = \frac{7 + \sqrt{29}}{2}$ and $x = \frac{7 - \sqrt{29}}{2}$ b) $x = 7 + \sqrt{29}$ and $x = 7 - \sqrt{29}$ c) $x = -5$ and $x = -1$ d) $x = \frac{7 + \sqrt{69}}{2}$ and $x = \frac{7 - \sqrt{69}}{2}$ 17. Part B: A toy cannon ball is launched from a cannon on top of a platform. The equation $h(t) = -5t^2 + 20t + 4t^2$ gives the height, h, in meters, of the ball t seconds after it is launched. Does the ball reach a height of l2m? a) Yes b) No
а) 18.	$-5t^{2} + 20t + 4 = x + 12$ What value(s) of b will cause $4x^{2} + bx + 25 = 0$ to have	19. Determine the number of real solutions of the system:
a) b) c) d)	one real solution? Select all that apply . b = -20 b = -50 b = 20 b = 100	$\begin{cases} y = x^{2} + 8 \\ y = x + 15 \end{cases}$ a) 0 b) 1 c) 2 d) 3
20.	Solve the equation $-3x^2 + 2x + 4 = -x - 3$ by writing a linear-quadratic system and solving using the intersection feature of a graphing calculator. Round to the nearest hundredth.	
a) b) c) d)	$\begin{array}{l} x\approx-2.44 \ \text{and} \ x\approx 3.12 \\ x\approx-1.63 \ \text{and} \ x\approx 4.43 \\ x\approx-1.11 \ \text{and} \ x\approx 2.11 \\ x\approx-2.61 \ \text{and} \ x\approx 0.42 \end{array}$	